Sebelum melakukan visualisasi, terlebih dahulu kita melakukan download data katalog gempabumi yang dapat diambil dari beberapa agensi. Beberapa pengertian dari istilah yang muncul dalam gempabumi adalah:
Catalog terdiri atas daftar beberapa kejadian gempabumi (event), yang berisikan:

Untuk script Python Download_Data.ipynb dapat diakses pada: PyGMT-Download Data
import pygmt
from obspy.clients.fdsn import Client
from obspy import UTCDateTime
import pandas as pd
import numpy as np
Client merupakan lembaga yang tergabung dalam International Federation of Digital Seismograph Networks (FDSN) yang menyediakan data seismogram secara open-source. Berikut merupakan daftar Client yang dapat diakses: | No | Agensi | Keterangan | Website | |——–|————|—————-|————| | 01 | AUSPASS | The Australian Passive Seismic Server | http://auspass.edu.au | | 02 | BGR | Bundesanstalt fur Geowissenschaften und Rohstoffe | http://eida.bgr.de | | 03 | EIDA | European Integrated Data Archive | http://eida-federator.ethz.ch | | 04 | EMSC | European-Mediterranean Seismological Centre | http://www.seismicportal.eu | | 05 | ETH | ETH Zurich | http://eida.ethz.ch | | 06 | GEOFON | GFZ German Research Center for Geosciences | http://geofon.gfz-potsdam.de | | 07 | GEONET | Geonet New Zealand | http://service.geonet.org.nz | | 08 | GFZ | GFZ Potsdam | http://geofon.gfz-potsdam.de | | 09 | ICGC | Institut Cartografic i Geologic de Catalunya | http://ws.icgc.cat | | 10 | IESDMC | The Data Management | http://batsws.earth.sinica.edu.tw | | 11 | INGV | The Istituto Nazionale di Geofisica e Vulcanologia | http://webservices.ingv.it | | 12 | IPGP | Institut de Physique du Globe de Paris | http://ws.ipgp.fr | | 13 | IRIS | Incorporated Research Institutions for Seismology | http://service.iris.edu | | 14 | IRISPH5 | Incorporated Research Institutions for Seismology | http://service.iris.edu | | 15 | ISC | International Seismological Centre | http://isc-mirror.iris.washington.edu | | 16 | KNMI | Royal Dutch Meteorological Institute | http://rdsa.knmi.nl | | 17 | KOERI | Kandilli Observatory and Earthquake Research Institute | http://eida.koeri.boun.edu.tr | | 18 | LMU | Ludwig-Maximilians Universitat Munchen | http://erde.geophysik.uni-muenchen.de | | 19 | NCEDC | The Northern California Earthquake Data Center | http://service.ncedc.org | | 20 | NIEP | The National Institute for Earth Physics | http://eida-sc3.infp.ro | | 21 | NOA | National Seismic Network | http://eida.gein.noa.gr | | 22 | ODC/ORFEUS | ORFEUS Data Center | http://www.orfeus-eu.org | | 23 | RASPISHAKE | | https://fdsnws.raspberryshakedata.com | | 24 | RESIF | | http://ws.resif.fr | | 25 | RESIFPH5 | | http://ph5ws.resif.fr | | 26 | SCEDC | The Southern California Earthquake Data Center | http://service.scedc.caltech.edu | | 27 | TEXNET | Texas Seismological Network | http://rtserve.beg.utexas.edu | | 28 | UIB-NORSAR | Universitas Bergensis-Norwegian Seismic Array | http://eida.geo.uib.no | | 29 | USGS | United States Geological Survey | http://earthquake.usgs.gov | | 30 | USP | Centro de Sismologia | http://sismo.iag.usp.br |

Misalkan data katalog yang dibutuhkan adalah dengan batasan sebagai berikut:
| Min | Max | |
|---|---|---|
| Time | 1 Maret 2011 | 15 Maret 2011 |
| Longitude | 135°E | 145°E |
| Latitude | 35°N | 42°N |
| Depth | - | - |
| Magnitude | 6 | - |
Maka dapat dituliskan script pada Jupyter sebagai berikut:
client = Client("IRIS")
starttime = UTCDateTime("2011-03-01T00:00:00")
endtime = UTCDateTime("2011-03-16T00:00:00")
min_lon = 135
max_lon = 145
min_lat = 35
max_lat = 42
catalog = client.get_events(starttime=starttime, endtime=endtime, minmagnitude=6,
minlongitude=min_lon, maxlongitude=max_lon,
minlatitude=min_lat, maxlatitude=max_lat)
lon, lat, depth, mag, time = [], [], [], [], []
for i in range(len(catalog)):
event = catalog[i]
origins = event.origins[0]
time.append(origins.time)
lon.append(origins.longitude)
lat.append(origins.latitude)
depth.append(origins.depth/1000)
mag.append(event.magnitudes[0].mag)
data = pd.DataFrame({"time":time,"lon":lon, "lat":lat, "depth_km":depth, "mag":mag})
year, month, day, hour, minute, second = [], [], [], [], [], []
for i in range(len(catalog)):
datetime = UTCDateTime(time[i])
year.append(datetime.year)
month.append(datetime.month)
day.append(datetime.day)
hour.append(datetime.hour)
minute.append(datetime.minute)
second.append(datetime.second + datetime.microsecond/(10**6))
data = pd.DataFrame({"year":year, "month":month, "day":day, "hour":hour, "minute":minute, "second":second, "lon":lon,
"lat":lat, "depth_km":depth, "mag":mag})
data.to_csv("Katalog_Gempa_Tohoku_2011.csv")
Maka file CSV akan muncul pada folder yang sama dengan file *.ipynb File tersebut juga dapat dibuka di Ms. Excel